Julius Jonušas
Institut für Diskrete Mathematik und Geometrie, TU Wien

I currently hold Lise Meitner project ‘An algebraic theory for PCSPs’ funded by the Austrian Science Fund (FWF) and hosted by Michael Pinsker.




Institut für Diskrete Mathematik und Geometrie
TU Wien
Wiedner Hauptstrasse 8-10
1040 Wien, Austria


  1. (with P. Gillibert and M. Pinsker) ‘Pseudo-loop conditions’, submitted; arXiv
  2. (with J. Hyde, J. D. Mitchell, and Y. Péresse) ‘Universal sequences of groups and inverse semigroups’, submitted; arXiv
  3. (with S. Troscheit) ‘Random ubiquitous transformation semigroups’, Semigroup Forum (2019) DOI; arXiv.
  4. (with J. D. Mitchell and M. Pfeiffer) ‘Two variants of the Froiduire-Pin Algorithm for finite semigroups’, Portugalia Mathematicae (2017) 74 (3); 173 – 200; DOI; arXiv.
  5. (with C. Bleak and C. Donoven) ‘Some isomorphism results for Thompson like groups Vn(G)’, Israel Journal of Mathematics (2017) 222 (1) 1 – 19; DOI ; arXiv.
  6. (with J. D. Mitchell) ‘Topological 2-generation of automorphism groups of countable ultrahomogeneous graphs’, Forum Mathematicum (2016) 29 (4); 905 – 939; DOI; arXiv.
  7. (with J. Hyde, J. D. Mitchell, and Y. Péresse) ‘Universal sequences for the order-automorphisms of the rationals’, Journal of the London Mathematical Society (2016) 94 (1): 21 – 37; DOI ; arXiv.
  8. (with J. D. Mitchell) ‘A finite interval in the subsemigroup lattice of the full transformation monoid’, Semigroup Forum (2014) 89 (1): 183 – 198; DOI; arXiv.
  9. (with V. Gruslys, V. Mijovic, O. Ng, L. Olsen, and I. Petrykiewicz) ‘Dimensions of Prevalent Continuous Functions’, Monatshefte fuer Mathematik, (2012) 166 (2), 153 – 180; DOI.


  1. Digraphs – (with J. D. Mitchell, M. Torpey and W. Wilson) GAP package, coauthor.
  2. Semigroups – deposited GAP package, contributed code for free bands and free inverse semigroups, and key algorithms for semigroup ideals.